THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Problem Set 1

- 1. Suppose that $\mathbf{u} = 5\mathbf{i} + 12\mathbf{j}$ and $\mathbf{v} = -6\mathbf{i} 8\mathbf{j}$. Find
 - (a) $\mathbf{u} \cdot \mathbf{v}$,
 - (b) $|\mathbf{u}|$ and $|\mathbf{v}|$,
 - (c) the angle between ${\bf u}$ and ${\bf v}.$
- 2. Let $\mathbf{a} = 4\mathbf{i} 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.
 - (a) Express $\mathbf{a} = \mathbf{u} + \mathbf{v}$ such that \mathbf{u} is parallel to \mathbf{b} and \mathbf{v} is orthogonal to \mathbf{b} .
 - (b) Find the area of parallelogram spanned by **a** and **b**.
- 3. Let A = (3, 3, 0), B = (-2, -3, 2) and C = (1, 0, 3) be three points in \mathbb{R}^3 . Find the volume of the tetrahedron *OABC*.
- 4. Let A and B be two points in \mathbb{R}^n and let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. Suppose that C is a point on AB such that AC : CB = r : s, where $r, s \in \mathbb{R}$. Show that

$$\overrightarrow{OC} = \frac{1}{r+s}(r\mathbf{b} + s\mathbf{a}).$$

- 5. Let **p** and **q** be nonzero vectors in \mathbb{R}^n such that they are not parallel and let $a_1, a_2, b_1, b_2 \in \mathbb{R}$. Prove that if $a_1\mathbf{p} + a_2\mathbf{q} = b_1\mathbf{p} + b_2\mathbf{q}$, then $a_1 = b_1$ and $a_2 = b_2$.
- 6.

In the above diagram, ABCD is a parallelogram and F is a point on AB.

Suppose that DF and AC intersect at the point E such that $DE : EF = \lambda : 1$, where $\lambda > 0$. Let $\overrightarrow{AB} = \mathbf{p}, \ \overrightarrow{AD} = \mathbf{q}, \ \overrightarrow{AE} = h\overrightarrow{AC}$ and $\overrightarrow{AF} = k\overrightarrow{AB}$, where h, k > 0.

- (a) i. Express \overrightarrow{AE} in terms of h, \mathbf{p} and \mathbf{q} .
 - ii. Express \overrightarrow{AE} in terms of λ , $k \mathbf{p}$ and \mathbf{q} . Hence, show that $\lambda = \frac{1}{k}$.

(b) Given that
$$|\mathbf{p}| = 3$$
, $|\mathbf{q}| = 2$ and $\angle DAB = \frac{\pi}{3}$.

- i. Find $\mathbf{p} \cdot \mathbf{q}$.
- ii. Suppose that DF is perpendicular to AC.
 - (1) Express \overrightarrow{DF} in terms of k, \mathbf{p} and \mathbf{q} , and so find the value of k.

In the above diagram, A, B, C are three distinct points in \mathbb{R}^2 and let $\overrightarrow{AB} = \mathbf{p}$, $\overrightarrow{AC} = \mathbf{q}$.

Suppose that D, E and F are mid-points of AB, AC and BC respectively, M is the intersection of CD and BE.

- (a) Suppose that CM: MD = r: 1 and BM: ME = s: 1, where r, s > 0.
 - i. Express \overrightarrow{AM} in terms of r, **p** and **q**.
 - ii. Express \overrightarrow{AM} in terms of s, \mathbf{p} and \mathbf{q} .
 - iii. Hence, show that r = s = 2 and $\overrightarrow{AM} = \frac{1}{3}(\mathbf{p} + \mathbf{q})$.
- (b) Prove that three medians AF, BE and CD of $\triangle ABC$ intersect at the point M. Also, prove that CM : MD = BM : ME = AM : MF = 2 : 1.
- 8. Let $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ and let

$$p(t) = \sum_{i=1}^{n} (a_i - b_i t)^2$$

be a polynomial.

By using the fact that $p(t) \ge 0$ for all $t \in \mathbb{R}$, prove that the Cauchy Schwarz inequality holds, i.e.

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

and the equality holds if and only if $a_1 = tb_1, a_2 = tb_2, \ldots, a_n = tb_n$ for some $t \in \mathbb{R}$.

7.